Exercise 2.8.2

Sketch the slope field for the following differential equations. Then "integrate" the equation manually by drawing trajectories that are everywhere parallel to the local slope.
a) $\dot{x}=x$
b) $\dot{x}=1-x^{2}$
c) $\dot{x}=1-4 x(1-x)$
d) $\dot{x}=\sin x$

Solution

Each of the ODEs can be written as

$$
\dot{x}=f(x) .
$$

The slope field is obtained by writing

$$
\langle d t, d x\rangle=\left\langle 1, \frac{d x}{d t}\right\rangle d t=\langle 1, \dot{x}\rangle d t=\langle 1, f(x)\rangle d t
$$

and plotting the vector field $\langle 1, f(x)\rangle$ in the $t x$-plane. The (magenta) streamlines are possible solutions to the differential equation.

Part (a)

The ODE here is $\dot{x}=x$, so the vector field plotted is $\langle 1, x\rangle$.

Part (b)

The ODE here is $\dot{x}=1-x^{2}$, so the vector field plotted is $\left\langle 1,1-x^{2}\right\rangle$.

Part (c)

The ODE here is $\dot{x}=1-4 x(1-x)$, so the vector field plotted is $\langle 1,1-4 x(1-x)\rangle$.

Part (d)

The ODE here is $\dot{x}=\sin x$, so the vector field plotted is $\langle 1, \sin x\rangle$.

