## Exercise 2.8.2

Sketch the slope field for the following differential equations. Then "integrate" the equation manually by drawing trajectories that are everywhere parallel to the local slope.

a)  $\dot{x} = x$  b)  $\dot{x} = 1 - x^2$  c)  $\dot{x} = 1 - 4x(1 - x)$  d)  $\dot{x} = \sin x$ 

#### Solution

Each of the ODEs can be written as

$$\dot{x} = f(x).$$

The slope field is obtained by writing

$$\langle dt, dx \rangle = \left\langle 1, \frac{dx}{dt} \right\rangle dt = \langle 1, \dot{x} \rangle dt = \langle 1, f(x) \rangle dt$$

and plotting the vector field  $\langle 1, f(x) \rangle$  in the *tx*-plane. The (magenta) streamlines are possible solutions to the differential equation.

#### Part (a)

The ODE here is  $\dot{x} = x$ , so the vector field plotted is  $\langle 1, x \rangle$ .



## Part (b)

4 I 1 2  ${}^{\kappa}$ 0 1 -2 1 Ι ١ Ι ١ Ι I Ţ -4 -2 2 4 -4 0 t

The ODE here is  $\dot{x} = 1 - x^2$ , so the vector field plotted is  $\langle 1, 1 - x^2 \rangle$ .

## Part (c)

The ODE here is  $\dot{x} = 1 - 4x(1 - x)$ , so the vector field plotted is  $\langle 1, 1 - 4x(1 - x) \rangle$ .



# Part (d)

The ODE here is  $\dot{x} = \sin x$ , so the vector field plotted is  $\langle 1, \sin x \rangle$ .

